If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+39x+19=0
a = 20; b = 39; c = +19;
Δ = b2-4ac
Δ = 392-4·20·19
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-1}{2*20}=\frac{-40}{40} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+1}{2*20}=\frac{-38}{40} =-19/20 $
| -3/w=-38 | | 9x-37=100 | | -w3=-38 | | 3-v=-15 | | -v/2=-35 | | 10x+6=109 | | 22=u/2-14 | | 4^x+3=8^2x-2 | | 0.6m+1=3 | | X+75=x+115= | | 11x+6=12x+12 | | 15x-5=14+2= | | 10=u/2-15 | | 29x+3=28x+7= | | 18=x/5-10 | | X-0.7x=89 | | -4=5+u | | 2=-7+w | | 21x-2=15x | | 327=a-10 | | 330=s+35 | | 2x-4/4=3/2 | | -8x+8=-9x-10 | | X=-16y=12 | | (8-2x)^((5)/(4))-3=29 | | 8-2x)^((5)/(4))-3=29 | | 17y-4=5y+38 | | 28-8m=-4(5m+2 | | 3(3v-4)=59 | | 6z+19+26+5z+4z+10=180 | | -4(c-1)=-24 | | 64=4(n+9) |