If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=-16t^2+64t+4
We move all terms to the left:
20-(-16t^2+64t+4)=0
We get rid of parentheses
16t^2-64t-4+20=0
We add all the numbers together, and all the variables
16t^2-64t+16=0
a = 16; b = -64; c = +16;
Δ = b2-4ac
Δ = -642-4·16·16
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-32\sqrt{3}}{2*16}=\frac{64-32\sqrt{3}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+32\sqrt{3}}{2*16}=\frac{64+32\sqrt{3}}{32} $
| X2+4×-16y+20=0 | | -14+x=7-2x | | 8x+64+16x=32x | | 1/2x-0.5=3.6 | | 3x+2=$x-4 | | (r-8)=(2r+5) | | x=12=2x-3 | | 7=1/2(2x^2-3x) | | -14=-2c+6 | | W-9=-7w+7 | | 0=-16t^2+320+32 | | -10d–-19d=18 | | (2x+3)(5x-2)=0 | | 2x-20+130=180 | | 10v+12v=-6 | | 2q^2-4q-1=7q^2-7q+1 | | 7xx=64 | | 11t+-17t=12 | | 6(3a)-(2)+5a=57 | | 8m-15-2m-3=-60 | | 2=n÷3 | | 2(1.5b-9)+6b=-7 | | (5x^2)+12=0 | | 1/x=4/x+1/x^2 | | 1/2(4x+2)=-2/3 | | 4(5)-7y=1 | | 0.3w-0.2w=3 | | 5(x-20)-10x=5 | | 3(12-x)=6 | | 3+m/4=6 | | 2+3x=3x=2 | | 2/6=3/8p |