20=(x+3)((1/2)x)

Simple and best practice solution for 20=(x+3)((1/2)x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20=(x+3)((1/2)x) equation:



20=(x+3)((1/2)x)
We move all terms to the left:
20-((x+3)((1/2)x))=0
Domain of the equation: 2)x))!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-((x+3)((+1/2)x))+20=0
We multiply all the terms by the denominator
-((x+3)((+1+20*2)x))=0
We calculate terms in parentheses: -((x+3)((+1+20*2)x)), so:
(x+3)((+1+20*2)x)
We add all the numbers together, and all the variables
(x+3)(41x)
We add all the numbers together, and all the variables
(x+3)41x
We multiply parentheses
41x^2+123x
Back to the equation:
-(41x^2+123x)
We get rid of parentheses
-41x^2-123x=0
a = -41; b = -123; c = 0;
Δ = b2-4ac
Δ = -1232-4·(-41)·0
Δ = 15129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{15129}=123$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-123)-123}{2*-41}=\frac{0}{-82} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-123)+123}{2*-41}=\frac{246}{-82} =-3 $

See similar equations:

| -3a+9=27 | | x/3+x/4=17 | | 3(20-x)-(60-3x)=0 | | 3(20-x)=60-3x | | 100+7+72+18=x | | x²+64=0 | | 22x+5x=90 | | 34k+(6.3−8.1k)÷0.9=22 | | 5x-2+5x+2=180 | | 196=124-w | | 5x+4×2x-6=41 | | 3x+7+10x/17=180 | | 12-8(x-3)=23 | | 5x-3=12+3 | | (3x+12)=(5x-30) | | 4.1x-18.54=3.6 | | 7x+28=5x+22 | | 1.5dd=3 | | √3x+4=7 | | 80w=40 | | 3y4−5=y2+3 | | 12^5x-1=5^x | | 1/2x+3/2x=8 | | X2-8x-1008=0 | | 2x/3.1-4.5=-8 | | 10*t=2.997 | | 3+24=-3(5x-9) | | 5x=55-4x-6 | | 5x+40=2× | | -4(3x+5)=2(x-2) | | (17x-8)(x-2)=555 | | x2–2x–P=0 |

Equations solver categories