20=(6x-1)(x-14)=180

Simple and best practice solution for 20=(6x-1)(x-14)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20=(6x-1)(x-14)=180 equation:



20=(6x-1)(x-14)=180
We move all terms to the left:
20-((6x-1)(x-14))=0
We multiply parentheses ..
-((+6x^2-84x-1x+14))+20=0
We calculate terms in parentheses: -((+6x^2-84x-1x+14)), so:
(+6x^2-84x-1x+14)
We get rid of parentheses
6x^2-84x-1x+14
We add all the numbers together, and all the variables
6x^2-85x+14
Back to the equation:
-(6x^2-85x+14)
We get rid of parentheses
-6x^2+85x-14+20=0
We add all the numbers together, and all the variables
-6x^2+85x+6=0
a = -6; b = 85; c = +6;
Δ = b2-4ac
Δ = 852-4·(-6)·6
Δ = 7369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(85)-\sqrt{7369}}{2*-6}=\frac{-85-\sqrt{7369}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(85)+\sqrt{7369}}{2*-6}=\frac{-85+\sqrt{7369}}{-12} $

See similar equations:

| |x^2+5x|=6 | | -4+2x=-16-17x | | 2/5x=250 | | (2x-3)-3x=4x-1 | | 4y+1/3=3/4 | | -12x+8=x+4 | | 0x=427. | | 7+11/7x=9(⅓+1/7x) | | 3x-4=7/5x-7-1/5 | | 8m-6=10-8m | | -88/45=1/4r+2/5r | | F(x)=x^2+9x-19 | | 3x-32=3x+20 | | -3x+10+4x=3-x+7 | | 9v=12+5v | | 5^x^2=110 | | 15+25x=225 | | 2x+7-9x=-7 | | 3x+20=3x-16 | | 15x+25=225 | | 2w+31=0 | | H=0.3+5.5t-4.9^2 | | 8=4w+20 | | 3y+20=3y-16 | | 1.5625=210+x | | -2x+15=85 | | -9(3-2y)=72 | | (45+x)=2(20+x) | | 14y+39=165 | | 4x-33-77=180 | | 9x+0.7=27.7 | | 6x+5x-9=90 |

Equations solver categories