If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=(1/2)(130-x)
We move all terms to the left:
20-((1/2)(130-x))=0
Domain of the equation: 2)(130-x))!=0We add all the numbers together, and all the variables
x∈R
-((+1/2)(-1x+130))+20=0
We multiply parentheses ..
-((-1x^2+1/2*130))+20=0
We multiply all the terms by the denominator
-((-1x^2+1+20*2*130))=0
We calculate terms in parentheses: -((-1x^2+1+20*2*130)), so:We get rid of parentheses
(-1x^2+1+20*2*130)
We get rid of parentheses
-1x^2+1+20*2*130
We add all the numbers together, and all the variables
-1x^2+5201
Back to the equation:
-(-1x^2+5201)
1x^2-5201=0
We add all the numbers together, and all the variables
x^2-5201=0
a = 1; b = 0; c = -5201;
Δ = b2-4ac
Δ = 02-4·1·(-5201)
Δ = 20804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20804}=\sqrt{4*5201}=\sqrt{4}*\sqrt{5201}=2\sqrt{5201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5201}}{2*1}=\frac{0-2\sqrt{5201}}{2} =-\frac{2\sqrt{5201}}{2} =-\sqrt{5201} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5201}}{2*1}=\frac{0+2\sqrt{5201}}{2} =\frac{2\sqrt{5201}}{2} =\sqrt{5201} $
| 40(x+4)+3(x+1)(x+4)=40(x+1)(x+3) | | 4(10+2y)+4y=4 | | 4^(3x+3)=256^(x) | | 4^3x+3=256^x | | 10-3x=-2x-8 | | 2x^2+20x=900 | | 40=x×x+6 | | -4.6p-6.3p+3.9=9.18 | | 3x+6x+2x-1=x | | 80-4p=4p | | 5^5x+5=125^x | | (x-5)(x-5)-(x-4)(x-10)=35 | | 12s+29=80 | | 70h=105 | | 105h=70 | | 2(x-6=3x | | 4x-7.6=20.4 | | 7+12x=-4x+x | | x^2+36x-80=0 | | |7x+19|=7 | | v^2-2v=13 | | n/6=45 | | m+13.4=25 | | 2(5x-35)=(2x+40) | | 5-2y=y+17 | | 2/12=x/36 | | 13g-48=-3g | | 12x+2=86 | | 4(x+6)=92 | | 9x+6−4x=−5x−18+x | | 9y=2.34 | | 6x+4=(2/3) |