If it's not what You are looking for type in the equation solver your own equation and let us solve it.
207=k(k+3)
We move all terms to the left:
207-(k(k+3))=0
We calculate terms in parentheses: -(k(k+3)), so:We get rid of parentheses
k(k+3)
We multiply parentheses
k^2+3k
Back to the equation:
-(k^2+3k)
-k^2-3k+207=0
We add all the numbers together, and all the variables
-1k^2-3k+207=0
a = -1; b = -3; c = +207;
Δ = b2-4ac
Δ = -32-4·(-1)·207
Δ = 837
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{837}=\sqrt{9*93}=\sqrt{9}*\sqrt{93}=3\sqrt{93}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{93}}{2*-1}=\frac{3-3\sqrt{93}}{-2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{93}}{2*-1}=\frac{3+3\sqrt{93}}{-2} $
| -6n-9=6-3n | | 8,4+p=12,4 | | -9+h=10-10h-8h | | 10-3j=-j | | 9y-8=-6+7y | | -6c+1=10-7c | | 5q=4+4q | | 0.05=0.4^n | | 5m-10=10+3m | | 7t+6=t | | 8j=10j+2 | | 3k+4=5k | | 9-9v=-8v | | -2+4s=3s | | 10(x+15)-3/2=2x+6+3x | | 15g-2(2g6)=11g-12 | | 0.50x480000= | | 3x+15/3=6 | | G(4b)=3(4b)+5 | | C²+7c+12=(c+)(c+) | | 4/5(a-7/3)-(-4/3a+1)=-1/3 | | 1-4(16x28)=24 | | x/4-1/2=9/4 | | (5y-15)+y=90 | | (3x-5)=(2x+14) | | 7x+1=3x+44 | | (6x+20)=(9x-4) | | 2x+42=(6x-6) | | 2x+42=2(6x-6) | | 5040=2x+3x+x | | x/8=3/2= | | -7÷2r-18=-14 |