201=5(1+6b)2b

Simple and best practice solution for 201=5(1+6b)2b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 201=5(1+6b)2b equation:



201=5(1+6b)2b
We move all terms to the left:
201-(5(1+6b)2b)=0
We add all the numbers together, and all the variables
-(5(6b+1)2b)+201=0
We calculate terms in parentheses: -(5(6b+1)2b), so:
5(6b+1)2b
We multiply parentheses
60b^2+10b
Back to the equation:
-(60b^2+10b)
We get rid of parentheses
-60b^2-10b+201=0
a = -60; b = -10; c = +201;
Δ = b2-4ac
Δ = -102-4·(-60)·201
Δ = 48340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48340}=\sqrt{4*12085}=\sqrt{4}*\sqrt{12085}=2\sqrt{12085}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{12085}}{2*-60}=\frac{10-2\sqrt{12085}}{-120} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{12085}}{2*-60}=\frac{10+2\sqrt{12085}}{-120} $

See similar equations:

| 0=16t^+96t+112 | | x+11/15=120 | | W+3w-2+3w=11+7(w+2) | | 3/4+2x=5/4-3x | | 24v^2+42v-27=0 | | X^3-6x^2-10x+60=0 | | -9m+10(m+3)=7(m-10) | | (X^2+7x+10)/2=44 | | -6-(-47)=x/11 | | -4,8f+6.4=-8.48 | | 11x*2=x+63 | | 28+8x=8(x+3+2 | | 2(3z-1)-2(7-2z)=2 | | (K^2+7k+10)/2=44 | | 5.1x+x=722.9 | | 3/8x+11=11=5/8x-1 | | 2(5-8k)-14=9(1-k)-12 | | -60X^2+30x=0 | | 80=a(300)^2 | | -60X^+30x=0 | | 4.6x+16.4=32.96 | | -5c+1=-29 | | -3(x=3)7.5 | | 3y+17=-14 | | 0=5x+ | | 8-3h=5h+ | | 5n-5=-40 | | x+2(x+4)=19 | | 3x+7x+20=180 | | 4a-9(7a-4)=4a- | | Y=100+.75x | | -5(x+3)+7=2(x+4) |

Equations solver categories