20-1/5d=7/10d+16

Simple and best practice solution for 20-1/5d=7/10d+16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20-1/5d=7/10d+16 equation:



20-1/5d=7/10d+16
We move all terms to the left:
20-1/5d-(7/10d+16)=0
Domain of the equation: 5d!=0
d!=0/5
d!=0
d∈R
Domain of the equation: 10d+16)!=0
d∈R
We get rid of parentheses
-1/5d-7/10d-16+20=0
We calculate fractions
(-10d)/50d^2+(-35d)/50d^2-16+20=0
We add all the numbers together, and all the variables
(-10d)/50d^2+(-35d)/50d^2+4=0
We multiply all the terms by the denominator
(-10d)+(-35d)+4*50d^2=0
Wy multiply elements
200d^2+(-10d)+(-35d)=0
We get rid of parentheses
200d^2-10d-35d=0
We add all the numbers together, and all the variables
200d^2-45d=0
a = 200; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·200·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2025}=45$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*200}=\frac{0}{400} =0 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*200}=\frac{90}{400} =9/40 $

See similar equations:

| .25(24-12x)=-3x+6 | | 9b+-20b-5b-9=7 | | 10x-49=182 | | 2/9x=-3/18 | | 28x^2*1=396 | | 6p-3p+4p-3=4 | | 300x+7=350 | | 4/5x-10=38 | | 15g-5g=20 | | 2x12=-3 | | 5x+-16x+16x=-5 | | 0.8(x-15)=0.8x-12 | | 10k-10k+4k-2k+4k=6 | | 0.8+12=x-12 | | 20d-13d-4d-d=18 | | k^2-22k+7=4 | | -11b+10b=5 | | -26+7x+18=-2x-8+9x | | 20b-4b-16b+2b=20 | | (2x)^(7/4)=128 | | 2(3x+5=10) | | 20c+3c+c-20c=20 | | +9+x=34 | | 2−15(−x+1)=3+2(5-x) | | 24k=20 | | 9a-6a+2a-a-3a=18 | | 4z+10+5z+26=180 | | -4x+7x=21 | | 9x-14x=90 | | 5x+5(x-7)=-75 | | 43.25=7+1.25j | | (75+2x)/200=90 |

Equations solver categories