2/x+(x+22)+x=232

Simple and best practice solution for 2/x+(x+22)+x=232 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/x+(x+22)+x=232 equation:



2/x+(x+22)+x=232
We move all terms to the left:
2/x+(x+22)+x-(232)=0
Domain of the equation: x!=0
x∈R
We add all the numbers together, and all the variables
x+2/x+(x+22)-232=0
We get rid of parentheses
x+2/x+x+22-232=0
We multiply all the terms by the denominator
x*x+x*x+22*x-232*x+2=0
We add all the numbers together, and all the variables
-210x+x*x+x*x+2=0
Wy multiply elements
x^2+x^2-210x+2=0
We add all the numbers together, and all the variables
2x^2-210x+2=0
a = 2; b = -210; c = +2;
Δ = b2-4ac
Δ = -2102-4·2·2
Δ = 44084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44084}=\sqrt{4*11021}=\sqrt{4}*\sqrt{11021}=2\sqrt{11021}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-210)-2\sqrt{11021}}{2*2}=\frac{210-2\sqrt{11021}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-210)+2\sqrt{11021}}{2*2}=\frac{210+2\sqrt{11021}}{4} $

See similar equations:

| 5x*2-3x=0 | | w=4/3(1)^3 | | w=4/3(0.5)^3 | | 7(3x-4)=49(2,5) | | 0.25x=2+x | | (2D^2-5D-12)y=0 | | 12=33-2x | | 5(+8)+2(y+1(=() | | 7x+8-5x+3=4 | | (2x+40)=(3x+20 | | X2+x=3.75 | | 0.5〖(12.3)〗^2-48x=3/5 | | -14+9=7(5-2m)-7 | | X/3x+14=5x-4 | | (5x+20)=3(x+10) | | 6x+14–12x–16=8x+4 | | -3(4s-3)-9=-2(8s+8)-2 | | Y=16^2+187x+93 | | -8x^2+10=0 | | X3-x=60 | | 6x–5=10+3x. | | 5/11(x-4)=15 | | 1/9=27^2^x | | 3x^2-7=2x^2-5 | | 2(x-1)-11=69 | | a^2+22a-105=0 | | 3(v+4)=7v+24 | | 2a^2+22a-105=0 | | 3x^2+7=2x^2-5 | | 9(x-11)=135 | | x-(.40)=90 | | 5(x-6)-2=-4(-5x+5)-7x |

Equations solver categories