2/k+4-3/k=7/5k

Simple and best practice solution for 2/k+4-3/k=7/5k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/k+4-3/k=7/5k equation:



2/k+4-3/k=7/5k
We move all terms to the left:
2/k+4-3/k-(7/5k)=0
Domain of the equation: k!=0
k∈R
Domain of the equation: 5k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
2/k-3/k-(+7/5k)+4=0
We get rid of parentheses
2/k-3/k-7/5k+4=0
We calculate fractions
(-15k+2)/5k^2+(-7k)/5k^2+4=0
We multiply all the terms by the denominator
(-15k+2)+(-7k)+4*5k^2=0
Wy multiply elements
20k^2+(-15k+2)+(-7k)=0
We get rid of parentheses
20k^2-15k-7k+2=0
We add all the numbers together, and all the variables
20k^2-22k+2=0
a = 20; b = -22; c = +2;
Δ = b2-4ac
Δ = -222-4·20·2
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-18}{2*20}=\frac{4}{40} =1/10 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+18}{2*20}=\frac{40}{40} =1 $

See similar equations:

| (-6x-6)=(8x-6) | | Nx9=54 | | /8/3+3n=4/5n+12 | | 0=5x^2-22x+6 | | -(13x+11)-3x=-21-14x | | 3.4x=3x+0.5 | | 5u-39=8(u-3) | | -4n-8n-20n+-2n+16n=-18 | | D=60h | | -77=7z | | x/5=9.11 | | x-21/2=4(x) | | -8=4v | | 6d-8=4 | | 4m-4m+3m=15 | | -p-p=6-p | | (X-21)÷2=4(x) | | 2.1x+2.1=2.8x | | 3a+17-a=15a-20a+31-4 | | 9(y-3)=3y-15 | | |x-5|=|7x-6| | | -8/5=x+5 | | 3x/4+1.6=2x/3-0.4 | | 2x-38=-4(x-4) | | 3(7s+6)-15s=3(2s+1)-4 | | 3/7=+y=9/14 | | X-21÷2=4(x) | | x(2x-1)(2x+3)=0 | | 15y-11y-3y=10 | | (7x-3)+(5x-21)=180 | | 4(w+2)=-3w+43 | | (5x-3)=(4x+8) |

Equations solver categories