2/9+1/3n=3/2n+1

Simple and best practice solution for 2/9+1/3n=3/2n+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/9+1/3n=3/2n+1 equation:



2/9+1/3n=3/2n+1
We move all terms to the left:
2/9+1/3n-(3/2n+1)=0
Domain of the equation: 3n!=0
n!=0/3
n!=0
n∈R
Domain of the equation: 2n+1)!=0
n∈R
We get rid of parentheses
1/3n-3/2n-1+2/9=0
We calculate fractions
24n^2/486n^2+162n/486n^2+(-729n)/486n^2-1=0
We multiply all the terms by the denominator
24n^2+162n+(-729n)-1*486n^2=0
Wy multiply elements
24n^2-486n^2+162n+(-729n)=0
We get rid of parentheses
24n^2-486n^2+162n-729n=0
We add all the numbers together, and all the variables
-462n^2-567n=0
a = -462; b = -567; c = 0;
Δ = b2-4ac
Δ = -5672-4·(-462)·0
Δ = 321489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{321489}=567$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-567)-567}{2*-462}=\frac{0}{-924} =0 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-567)+567}{2*-462}=\frac{1134}{-924} =-1+5/22 $

See similar equations:

| 19-18n=15-20n | | 1.1(0.3-n)=6(0.5-2n) | | $45h-1200=$60h-1800 | | 8.25x+12.38+x=385.71 | | 30=10x-6(2x+5) | | 1/2x+1/4X=-6 | | (5/8)(x^2)-5=5 | | 24-8=-6-24-6k | | 8.25+12.38x+x=385.71 | | 2q-18=10+4q | | 2x-2+8=5x | | 4p=-35 | | 8=4(q-2+)+4 | | -13+49=-3(x+2) | | −(5a+6)=2(3a+8) | | 2.5p-2.87=6.6p+12.71 | | 64+24-5=39-4x | | 3x-40=17x | | 4u+4+9u=14u-3 | | 4+8x6+5=2 | | 1/8×b=6 | | -2p=-3p+19 | | 8x+6x=166 | | 6x-2(-3x-5)=156 | | -k=8(k-10) | | 2*1+3b=-4 | | 4x-5=20x-+3 | | 3-2(y-1)=2+9y | | -14.99-6u+10.24=-6.5u-6.55 | | 6x-2(-3x-5)=56 | | 32x+1.2=4 | | 4(5x+6)=-46+30 |

Equations solver categories