If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/7x+x=54
We move all terms to the left:
2/7x+x-(54)=0
Domain of the equation: 7x!=0We add all the numbers together, and all the variables
x!=0/7
x!=0
x∈R
x+2/7x-54=0
We multiply all the terms by the denominator
x*7x-54*7x+2=0
Wy multiply elements
7x^2-378x+2=0
a = 7; b = -378; c = +2;
Δ = b2-4ac
Δ = -3782-4·7·2
Δ = 142828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{142828}=\sqrt{4*35707}=\sqrt{4}*\sqrt{35707}=2\sqrt{35707}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-378)-2\sqrt{35707}}{2*7}=\frac{378-2\sqrt{35707}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-378)+2\sqrt{35707}}{2*7}=\frac{378+2\sqrt{35707}}{14} $
| 9f=0.5(12f−2) | | 3k+9/6=5 | | n(n-3)=360 | | (x)/(4)+8=x+2 | | -8+7k=55 | | 2x^2-16x-7=0 | | 4y+4=-1/y | | 2x^2-16x-7380=0 | | 2x^2-16x-7396=0 | | x+2/3x=280 | | 1.3=2.3/30(x) | | 3=(x+10)/2 | | x+4/5=-2/3-4/15 | | (x+1)(x–1)(x–5)=0 | | F(-x)=x^2-3x+4 | | 3=22x+11 | | 42x+63=30x+30+105 | | 2x−3(x+4)=−2(x−7)−20 | | x^2+15x-398=0 | | x=40+-1.6 | | 3t+5=47 | | 2x−3(x+4)=−2(x−7)−202x-3(x+4)=-2(x-7)-20 | | 9w-4=138-16w+8 | | 7v-9+18v-15=126 | | 7(9c-1)-18=61c+7 | | F(x)=|x+3| | | -56=7u-35-12u-24 | | 7v-42v-49=0 | | S^3+4s^2+4s+15=0 | | 42=63w-21+18w-18 | | 0=(2(x^-1/2))-(3(x^-1/2)) | | x3-x=1320 |