2/7x+3=3/5x-18

Simple and best practice solution for 2/7x+3=3/5x-18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/7x+3=3/5x-18 equation:



2/7x+3=3/5x-18
We move all terms to the left:
2/7x+3-(3/5x-18)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 5x-18)!=0
x∈R
We get rid of parentheses
2/7x-3/5x+18+3=0
We calculate fractions
10x/35x^2+(-21x)/35x^2+18+3=0
We add all the numbers together, and all the variables
10x/35x^2+(-21x)/35x^2+21=0
We multiply all the terms by the denominator
10x+(-21x)+21*35x^2=0
Wy multiply elements
735x^2+10x+(-21x)=0
We get rid of parentheses
735x^2+10x-21x=0
We add all the numbers together, and all the variables
735x^2-11x=0
a = 735; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·735·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*735}=\frac{0}{1470} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*735}=\frac{22}{1470} =11/735 $

See similar equations:

| 21=12x+3 | | 3•x-9=30 | | x+x*20/100=180 | | x*x*20/100=180 | | v/10=7 | | x*20/100=180 | | 8c=22 | | b*4=24 | | x^2-2x+2=2x-1 | | 5x/2=3×(2x-1)/2-1/2x | | -10(x+3)-4(x-4)=15(x+2)+3 | | 3x-5x^2=8 | | 36+5x=100-3x | | 20+12x=9x-10 | | 4x-6=8+12x | | 3x+7=2x+12 | | -9x+22=-3x+7.0 | | 0,3x=12 | | 2(3+4x)-8x=6 | | 25x+75=360 | | 0,333x=15 | | 0,333x=15 | | 1/13x=15 | | 13x=15 | | 4(x+4)=-2x-1 | | 94-3x=4 | | v+2=16-6v | | 7a-6=4a | | 6x-90=24x | | 3x+54=-24x | | 6(7x-5)=5(-7x+3)+109 | | 7x-4=-4(8x-5)+93 |

Equations solver categories