If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/7k-8/9=-6-5/4k
We move all terms to the left:
2/7k-8/9-(-6-5/4k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 4k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
2/7k-(-5/4k-6)-8/9=0
We get rid of parentheses
2/7k+5/4k+6-8/9=0
We calculate fractions
(-896k^2)/2268k^2+648k/2268k^2+2835k/2268k^2+6=0
We multiply all the terms by the denominator
(-896k^2)+648k+2835k+6*2268k^2=0
We add all the numbers together, and all the variables
(-896k^2)+3483k+6*2268k^2=0
Wy multiply elements
(-896k^2)+13608k^2+3483k=0
We get rid of parentheses
-896k^2+13608k^2+3483k=0
We add all the numbers together, and all the variables
12712k^2+3483k=0
a = 12712; b = 3483; c = 0;
Δ = b2-4ac
Δ = 34832-4·12712·0
Δ = 12131289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12131289}=3483$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3483)-3483}{2*12712}=\frac{-6966}{25424} =-3483/12712 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3483)+3483}{2*12712}=\frac{0}{25424} =0 $
| -16+5x=43x+7 | | 2/h-5=25 | | 2x-9+x+1=180 | | 2x-9+x+1=18 | | -2+5x+4=-13 | | -10+(7)/(4)p=-38 | | -2w-3.7=-0.5 | | (17x+1)+23=22x+4 | | 16.4=c+ | | 4(2y=7)+3y=6 | | (4x-3)+(x+48)=180 | | -(1)/(3)m+1=-7 | | T(n)=5n+4 | | 8n+10n=180° | | 2(9x+2)=15x+28 | | 4x-(3x+4)=-6 | | -3+55=x | | 4x-(3x=4)=-6 | | -16x^2+21x+106=0 | | 9n^2−1=0 | | (3)/(5)x+22=28 | | 18y+2=15y+28 | | 4x-186=129+1x | | 11=(c)/(-5)+8 | | -10=7+y | | 0.5x+57=0.2x+207 | | 3x-22=2-x | | 2x+32=20 | | -14=v-10 | | 2x^2+11=-5 | | 2=421=3x | | 21=t+2 |