If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/6p+3=3/7p+1
We move all terms to the left:
2/6p+3-(3/7p+1)=0
Domain of the equation: 6p!=0
p!=0/6
p!=0
p∈R
Domain of the equation: 7p+1)!=0We get rid of parentheses
p∈R
2/6p-3/7p-1+3=0
We calculate fractions
14p/42p^2+(-18p)/42p^2-1+3=0
We add all the numbers together, and all the variables
14p/42p^2+(-18p)/42p^2+2=0
We multiply all the terms by the denominator
14p+(-18p)+2*42p^2=0
Wy multiply elements
84p^2+14p+(-18p)=0
We get rid of parentheses
84p^2+14p-18p=0
We add all the numbers together, and all the variables
84p^2-4p=0
a = 84; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·84·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*84}=\frac{0}{168} =0 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*84}=\frac{8}{168} =1/21 $
| x2=51 | | g/9=10 | | 3(q+4)=8 | | 16-16k=16-16k | | -7x-10-2x=71 | | x^2+4=-140 | | Z-1=z+6 | | 4(4–4k)=16–16k | | -2(4x-8)=-48 | | 4(9.75x4.15-3)=150 | | x+3x-7=61 | | 49=7(x+1)# | | 4(y−12)=16 | | 9=-6+c | | 1+2b=1-3b | | 6=u/10 | | 49-0.66x=32-1x | | 6(x+2)=4x+2x+3 | | M+3(m-4)=15 | | 3x-6(-3x-15)=-57 | | 6(x+4)+1=2x+26 | | w-11=-9 | | 3x+x=360° | | -10x+4=-56 | | 2(3x+)-4=6x+10 | | 9n=380 | | 72=2n | | 32^-3x=4 | | 6+f=f | | /r=11 | | -26=5n+4 | | 1+3p=13+6p |