2/5x-7=1/2x+5

Simple and best practice solution for 2/5x-7=1/2x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x-7=1/2x+5 equation:



2/5x-7=1/2x+5
We move all terms to the left:
2/5x-7-(1/2x+5)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x+5)!=0
x∈R
We get rid of parentheses
2/5x-1/2x-5-7=0
We calculate fractions
4x/10x^2+(-5x)/10x^2-5-7=0
We add all the numbers together, and all the variables
4x/10x^2+(-5x)/10x^2-12=0
We multiply all the terms by the denominator
4x+(-5x)-12*10x^2=0
Wy multiply elements
-120x^2+4x+(-5x)=0
We get rid of parentheses
-120x^2+4x-5x=0
We add all the numbers together, and all the variables
-120x^2-1x=0
a = -120; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·(-120)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*-120}=\frac{0}{-240} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*-120}=\frac{2}{-240} =-1/120 $

See similar equations:

| 7d=13=35-4d | | -2x+3=-1-x | | −4x+1= −9x+16 | | −2(3h−1)=5(2h−3) | | 28t-1=28t+1 | | 12+4x=-36 | | 7.5(7+4.5x)=16.5 | | 10n+6=-106 | | 5x-1=5x=x+27 | | 25+8x=8(1+4x) | | 10x-16x=-36 | | –7n−10=–8n | | 4x-1=-3(2x-2 | | 55l=50l+5 | | 0.4x-7=0.5x+5 | | 9(8x+4)=2 | | 7/8x+9=47 | | 3y-4y+6=2+6y+6 | | 2x-3(3+2x)=7 | | 66=2{5+6x}+2x | | 20=34-2f | | (8d-5)+13=12d-2 | | 3x-2÷3+x-3÷2=5÷6 | | d-2=-2+d | | 750/r=250 | | 180=69+3w | | a+7=-a+13 | | -4(x-5)-16=0 | | 3x+4=2x+1=6x-7 | | 4+10x=3x | | 17-3x-15=6x+30-2x | | 9x-11=7x+17 |

Equations solver categories