2/5x-3=8-1/3x

Simple and best practice solution for 2/5x-3=8-1/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x-3=8-1/3x equation:



2/5x-3=8-1/3x
We move all terms to the left:
2/5x-3-(8-1/3x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2/5x-(-1/3x+8)-3=0
We get rid of parentheses
2/5x+1/3x-8-3=0
We calculate fractions
6x/15x^2+5x/15x^2-8-3=0
We add all the numbers together, and all the variables
6x/15x^2+5x/15x^2-11=0
We multiply all the terms by the denominator
6x+5x-11*15x^2=0
We add all the numbers together, and all the variables
11x-11*15x^2=0
Wy multiply elements
-165x^2+11x=0
a = -165; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·(-165)·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*-165}=\frac{-22}{-330} =1/15 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*-165}=\frac{0}{-330} =0 $

See similar equations:

| 7-2q=4 | | 16(x+2)-8=16x+ | | -2(x-4)+4x=16 | | 2(b+2)+1=9 | | 12×x-5=43 | | x=6³ | | s/8=8 | | Y-14=4(x-3) | | 2/5x-3=8-1/3x=5/69 | | 7x+13=-7x-3 | | (1+(x/12))^60=1,43 | | 1/2a+1/4=5/6 | | x=5³ | | 2(q-2)=6 | | 7p=10+2p | | 5=2(q+1)-3 | | a+3(4a+6)=96 | | 9.2x=37.72 | | -35=2(q+1) | | -127+6x=5x+203 | | -4(-7x-4)=240 | | 2x(x=3)=3 | | (5x+-1)(2x+-3)=0 | | -4k+-10=-6 | | 8m+13=13=+8m | | 2(c-7)=4 | | 4m+10+m=70 | | f2-3=1 | | 0=x^2-6x+14 | | 6^x-2=56 | | n=20-6 | | 4b+5=1+5 |

Equations solver categories