2/5x+6(1/5x-4)=32

Simple and best practice solution for 2/5x+6(1/5x-4)=32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+6(1/5x-4)=32 equation:



2/5x+6(1/5x-4)=32
We move all terms to the left:
2/5x+6(1/5x-4)-(32)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 5x-4)!=0
x∈R
We multiply parentheses
2/5x+6x-24-32=0
We multiply all the terms by the denominator
6x*5x-24*5x-32*5x+2=0
Wy multiply elements
30x^2-120x-160x+2=0
We add all the numbers together, and all the variables
30x^2-280x+2=0
a = 30; b = -280; c = +2;
Δ = b2-4ac
Δ = -2802-4·30·2
Δ = 78160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{78160}=\sqrt{16*4885}=\sqrt{16}*\sqrt{4885}=4\sqrt{4885}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-280)-4\sqrt{4885}}{2*30}=\frac{280-4\sqrt{4885}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-280)+4\sqrt{4885}}{2*30}=\frac{280+4\sqrt{4885}}{60} $

See similar equations:

| 4x-12(x-3)=44 | | -1=48+x | | F(-5)=-3x-2 | | -4x+8(x+2)=24 | | 10x4=46 | | 2(6+4)+t=48 | | 3n-n=102 | | 5(2x-30)=8x | | -3x+18=7x-12 | | b+3/b-4=4/5 | | 11y-8y+4=19 | | F(-1/2)=2x+3 | | 34+3x-7=7x+7-4x | | 2c+24=2c-12 | | 2/5w+6(1/5w-4)=32 | | 126-32=r | | -2(h+-4)=4 | | 2(w-4)+3w=7 | | 15=-3(k+-7) | | 5x+14+4x+7=9x-7 | | 2(3x-4)+5=6x+7 | | F+4÷g=6 | | -82=n/52 | | 15=-3(k+-70 | | 7r-4r+4=8r+4-r | | -3x-6=6x+7 | | 5x=14=4x=7+9x=7 | | X-30+2x-120+0.5x+15=180 | | 5x=14=4x=7+9x-7 | | -2x+10(x+6)=-12 | | -15=4(b-16)-19 | | 8/3m-2/5=1/5m-4 |

Equations solver categories