2/5x+3x-2=x+10

Simple and best practice solution for 2/5x+3x-2=x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+3x-2=x+10 equation:



2/5x+3x-2=x+10
We move all terms to the left:
2/5x+3x-2-(x+10)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
3x+2/5x-(x+10)-2=0
We get rid of parentheses
3x+2/5x-x-10-2=0
We multiply all the terms by the denominator
3x*5x-x*5x-10*5x-2*5x+2=0
Wy multiply elements
15x^2-5x^2-50x-10x+2=0
We add all the numbers together, and all the variables
10x^2-60x+2=0
a = 10; b = -60; c = +2;
Δ = b2-4ac
Δ = -602-4·10·2
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-8\sqrt{55}}{2*10}=\frac{60-8\sqrt{55}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+8\sqrt{55}}{2*10}=\frac{60+8\sqrt{55}}{20} $

See similar equations:

| e=1*299792458^2 | | e=45*299792458^2 | | 2x+2/3=3x+2 | | (x-17)-18x=(x-3)(x+16) | | 3x–6=6x+5 | | (23*57)*56+x=37 | | 5(6x+3)=5 | | |(23*57)|*56+x=37 | | 10(1.375)^12t=30 | | -16x^2+175x=85 | | 2x+1/3-x-1/4=1 | | X=5+2x+31 | | -126=-21p | | 2(3y/12)-2+3^2=192 | | 16=8^x-3 | | 0.5^(x-8)=0.125 | | 2x+85=4x-36 | | 2x+10=x+65 | | 1/2x+3/2(x+1)=1/4=5 | | 2x+10+x+65=180 | | -28-x=2 | | 6x-7=3/x | | 50=6x-2 | | (x+2)-1=7x | | 2x+1=5x–8 | | 5(r+1)-4r=-5+8 | | 1/2x-7,x=10 | | 3/2-x=9/4x-1 | | (x^2-81)(x^2-1)(x)=0 | | 8y+11=6y+9 | | 8b+9=3b=14 | | 7z+10-4(z+2)-2=-3z |

Equations solver categories