2/5x+16/5=5/2x-1

Simple and best practice solution for 2/5x+16/5=5/2x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5x+16/5=5/2x-1 equation:



2/5x+16/5=5/2x-1
We move all terms to the left:
2/5x+16/5-(5/2x-1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x-1)!=0
x∈R
We get rid of parentheses
2/5x-5/2x+1+16/5=0
We calculate fractions
4x/250x^2+(-625x)/250x^2+32x/250x^2+1=0
We multiply all the terms by the denominator
4x+(-625x)+32x+1*250x^2=0
We add all the numbers together, and all the variables
36x+(-625x)+1*250x^2=0
Wy multiply elements
250x^2+36x+(-625x)=0
We get rid of parentheses
250x^2+36x-625x=0
We add all the numbers together, and all the variables
250x^2-589x=0
a = 250; b = -589; c = 0;
Δ = b2-4ac
Δ = -5892-4·250·0
Δ = 346921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{346921}=589$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-589)-589}{2*250}=\frac{0}{500} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-589)+589}{2*250}=\frac{1178}{500} =2+89/250 $

See similar equations:

| 2(p-9)-12=-6 | | 3/2x+2=1/4x+7 | | 3(y-8)+-9=-6 | | V+24=4v | | 100y/10y=250 | | 100y/10y=0 | | 3x+10=10x | | (×-3)÷4+(x-1)÷5-(x-2)÷3=1 | | -8(4r+4)=6(2r10) | | 16w-24=8(2w-3) | | z=-3/2 | | 12y-16+30y-8=-8+4 | | 6x+14=-42+2x | | (x-1)(x+9)=8x | | 2x+20+44=4x+30-1220 | | 3/4x+12=24 | | -6=-2(s+19) | | 2(z+-3)=0 | | 6x+3(4x-2)=-78 | | .20x=50.35 | | -16-7w=w+14-6w | | -6+x/4=-10 | | −0.25a−4=7/4a−3 | | 3/2x+35=35 | | m=(8,3)(-4,-6) | | +6+18/x=8 | | p+3/2=3 | | -7w+1=8 | | A=3a+5 | | 7w-1=6 | | m=(-1,-3)(3,9) | | y=12556(5)2-5E+07+5+10 |

Equations solver categories