2/5q+30=6-4/10q

Simple and best practice solution for 2/5q+30=6-4/10q equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5q+30=6-4/10q equation:



2/5q+30=6-4/10q
We move all terms to the left:
2/5q+30-(6-4/10q)=0
Domain of the equation: 5q!=0
q!=0/5
q!=0
q∈R
Domain of the equation: 10q)!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
2/5q-(-4/10q+6)+30=0
We get rid of parentheses
2/5q+4/10q-6+30=0
We calculate fractions
20q/50q^2+20q/50q^2-6+30=0
We add all the numbers together, and all the variables
20q/50q^2+20q/50q^2+24=0
We multiply all the terms by the denominator
20q+20q+24*50q^2=0
We add all the numbers together, and all the variables
40q+24*50q^2=0
Wy multiply elements
1200q^2+40q=0
a = 1200; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·1200·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1600}=40$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*1200}=\frac{-80}{2400} =-1/30 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*1200}=\frac{0}{2400} =0 $

See similar equations:

| s(11-s)=s | | 4.9t^2+4t+1.8=0 | | 20b-15=18b-7 | | X=10x+-4.25+64.6 | | 9(y-84)=90 | | 5/(2x-1)=15 | | (2x-3)x12=36 | | (X)(x)-6=0 | | 2/5y+36=53/6 | | -4f=-4-2f | | 17x-1=16x+6 | | p=-27 | | 5(x-4)+1=26 | | 4=u/3-3 | | x/7=4/ | | y=15/12 | | 4y-2y+6=7 | | 5/82x-1)=15 | | -11a=-12a-12 | | 2x-15=6-5x | | -10+x=x-3 | | 32=y/5+41 | | x+x+x=x+9+7 | | 10+4r=-2+7r | | x-2.8=6.8 | | (5x)+(x+8)=86 | | -1a=-12a-12 | | 3x+19=108 | | 8s-16+15=11 | | 0.5(w+2)=-7 | | 2h/3+h/2=-49/6 | | -5w=2-3w |

Equations solver categories