2/5h-7=12,5h+3

Simple and best practice solution for 2/5h-7=12,5h+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/5h-7=12,5h+3 equation:



2/5h-7=12.5h+3
We move all terms to the left:
2/5h-7-(12.5h+3)=0
Domain of the equation: 5h!=0
h!=0/5
h!=0
h∈R
We get rid of parentheses
2/5h-12.5h-3-7=0
We multiply all the terms by the denominator
-(12.5h)*5h-3*5h-7*5h+2=0
We add all the numbers together, and all the variables
-(+12.5h)*5h-3*5h-7*5h+2=0
We multiply parentheses
-60h^2-3*5h-7*5h+2=0
Wy multiply elements
-60h^2-15h-35h+2=0
We add all the numbers together, and all the variables
-60h^2-50h+2=0
a = -60; b = -50; c = +2;
Δ = b2-4ac
Δ = -502-4·(-60)·2
Δ = 2980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2980}=\sqrt{4*745}=\sqrt{4}*\sqrt{745}=2\sqrt{745}$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{745}}{2*-60}=\frac{50-2\sqrt{745}}{-120} $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{745}}{2*-60}=\frac{50+2\sqrt{745}}{-120} $

See similar equations:

| 5(3x+2)=-50 | | -9+5(-7x-7)=-10 | | -75=5(u-6) | | 1-9x=6x-7x-31 | | 13=-x/9 | | -75=5(u-4) | | 5n+12=47 | | -5x=-7x+6 | | 1+08x=2+0.75x | | -3(-2x-1)=14 | | 0=4+1/5n | | -6+3x=8 | | -3(4y)-5+4=(6y+4) | | (3/5)x=(1/2)x-20 | | 6n-10=5n+6 | | -2r+1=27 | | 2+(x+4)=2(-8-x)-2x | | 7(2x+2)=6(3x+3) | | -20=5/3x | | 4(-4x-7)=8 | | x=2=22 | | Z=8z+3 | | 2+(x+4)=2(-8-x) | | 7x-4=1-2x-7+9x | | 10k–10k=0 | | 180=6x+34+8x+14 | | 3(0.5x+4)=4x-3 | | 72=x^2+4x | | -3c-12=-5=c | | -5/3(-4/5x+9)=-3 | | 3×n=51 | | 12391241x+14512=521 |

Equations solver categories