2/4k-1/14k=-3

Simple and best practice solution for 2/4k-1/14k=-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/4k-1/14k=-3 equation:



2/4k-1/14k=-3
We move all terms to the left:
2/4k-1/14k-(-3)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 14k!=0
k!=0/14
k!=0
k∈R
We add all the numbers together, and all the variables
2/4k-1/14k+3=0
We calculate fractions
28k/56k^2+(-4k)/56k^2+3=0
We multiply all the terms by the denominator
28k+(-4k)+3*56k^2=0
Wy multiply elements
168k^2+28k+(-4k)=0
We get rid of parentheses
168k^2+28k-4k=0
We add all the numbers together, and all the variables
168k^2+24k=0
a = 168; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·168·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*168}=\frac{-48}{336} =-1/7 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*168}=\frac{0}{336} =0 $

See similar equations:

| x^2=8^2+12^2 | | 52​ =m−5 | | 52​ =m−51​ | | 5/2x/2=9/2x-2(x+1) | | y-7.78=6.7 | | 16=19+u/4 | | 3n–2(–2–7n)=4(1–8n) | | 10x+9=-30 | | x^2=10^2+20^2 | | 3x-1=160 | | 10x+2.5=x= | | x^2=9^2+11^2 | | −0.8(10−x)=36. | | 0=–8u+8u | | y-77.8=6.7 | | -5x-25=-5(x+5) | | 91=4y+9y | | |6x-7|=41 | | 5=w/2-12 | | .5^(3x-6)=8^(x+1) | | x^2=6^2+8^2 | | 9(x-9)+6=-75 | | w-7.73=8.13 | | 8x+14/4=-1/2 | | .5^3x-6=8^x+1 | | x^2=6^2+6^2 | | y=12(2)-15 | | 1/8k-4=3/8k+4 | | 6x–2x=36 | | v+6.8=9.45 | | 4/14x=88 | | x^2=6^2+10^2 |

Equations solver categories