2/3y+12=7/5y-20

Simple and best practice solution for 2/3y+12=7/5y-20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3y+12=7/5y-20 equation:



2/3y+12=7/5y-20
We move all terms to the left:
2/3y+12-(7/5y-20)=0
Domain of the equation: 3y!=0
y!=0/3
y!=0
y∈R
Domain of the equation: 5y-20)!=0
y∈R
We get rid of parentheses
2/3y-7/5y+20+12=0
We calculate fractions
10y/15y^2+(-21y)/15y^2+20+12=0
We add all the numbers together, and all the variables
10y/15y^2+(-21y)/15y^2+32=0
We multiply all the terms by the denominator
10y+(-21y)+32*15y^2=0
Wy multiply elements
480y^2+10y+(-21y)=0
We get rid of parentheses
480y^2+10y-21y=0
We add all the numbers together, and all the variables
480y^2-11y=0
a = 480; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·480·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*480}=\frac{0}{960} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*480}=\frac{22}{960} =11/480 $

See similar equations:

| 3/1=25.5/z | | -34=y-2 | | -20x-15=-5x+45 | | 7b=10b-6 | | 19-7n=89 | | 2/3(6x−12)−5x=−4(−2x−7) | | 7-2y=32 | | 5m-4m=9 | | 19-7n=88 | | p-p/8=p/4+10 | | 2/3*(6x−12)−5x=−4(−2x−7) | | 10x+2x–1=11 | | 5x+11=20x–64 | | 3m²+48=0 | | x+16+x+14+x+18=180 | | 5x+4=2x+17 | | 2/3(6-x)+2-x=1 | | 3(n-17)-13=19 | | 4x-6x-6=16 | | 0.9c+0.7=2.5 | | 11−2x=31−7x | | 2(4x-16)-15x=-5 | | 4(3n-10)=10(n=3) | | 5y-81=8y+42 | | -6-2(x-6)=-6(2x+4) | | 18x+-17x+-14=-5 | | 2a-6-4a-7=1 | | 3(4x−1)=12x | | -15=-3(y-8) | | 17=s+1 | | -10x(x+4)+54=-13-13 | | d+13=18 |

Equations solver categories