If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x^2=14
We move all terms to the left:
2/3x^2-(14)=0
Domain of the equation: 3x^2!=0We multiply all the terms by the denominator
x^2!=0/3
x^2!=√0
x!=0
x∈R
-14*3x^2+2=0
Wy multiply elements
-42x^2+2=0
a = -42; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-42)·2
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*-42}=\frac{0-4\sqrt{21}}{-84} =-\frac{4\sqrt{21}}{-84} =-\frac{\sqrt{21}}{-21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*-42}=\frac{0+4\sqrt{21}}{-84} =\frac{4\sqrt{21}}{-84} =\frac{\sqrt{21}}{-21} $
| 9+7m=17+5m | | -240=-8(-4x+2) | | 24-4q=-28 | | 7-9.8t=0 | | 6v−5v=19 | | 100(z-0.2)=-10(5z0.8) | | -(w−-6)=-11 | | 11r+-77=-22 | | n^2+n=10^5 | | 160=-8(2k-6) | | n+(-5)=-5.75 | | 6/x-x-5=0 | | 18=5x=2-3x | | 5y-7/3-2y=2 | | 6x=x+115 | | 6x-x-5=0 | | 24-6h=-30 | | 4(9v+5)=-32+6 | | z+8+8z=35-z | | 7(1+6n)+5=-324 | | 7(x−5)=x+13 | | 2/3(6j+9)=3j+6 | | 2/3(6j+9)=3j+9 | | 8b-8+3b=24+3b | | 16j-13j-3=18 | | 14x+2= 9x−39x−3 | | 3x+31=6x-17 | | 5(x+1)+1=25 | | 1b-17=2 | | 1/2(10+12+12n)=1/3(15n+15) | | W^2+2-3w=0 | | 8x−5=6x+16x+1 |