If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x-7(x+4)=1/3x
We move all terms to the left:
2/3x-7(x+4)-(1/3x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
2/3x-7(x+4)-(+1/3x)=0
We multiply parentheses
2/3x-7x-(+1/3x)-28=0
We get rid of parentheses
2/3x-7x-1/3x-28=0
We multiply all the terms by the denominator
-7x*3x-28*3x+2-1=0
We add all the numbers together, and all the variables
-7x*3x-28*3x+1=0
Wy multiply elements
-21x^2-84x+1=0
a = -21; b = -84; c = +1;
Δ = b2-4ac
Δ = -842-4·(-21)·1
Δ = 7140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7140}=\sqrt{4*1785}=\sqrt{4}*\sqrt{1785}=2\sqrt{1785}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-2\sqrt{1785}}{2*-21}=\frac{84-2\sqrt{1785}}{-42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+2\sqrt{1785}}{2*-21}=\frac{84+2\sqrt{1785}}{-42} $
| 3(2x-9)=2x-1 | | xx71=143x−2+23−x−715 | | 3x(2x-9)=2x-1 | | 11-0.6x=55 | | 6x+4=5-(x+1) | | 12x+11(-7x-26)=39 | | 2-6(x-4)=3x-18+3x | | 1-3/4(8x+2)=2+1/2(x+8) | | 6(y+4)+5y=-46 | | 4n=0.36 | | 90-9x=9-11x+27 | | 3/2+f=1/5 | | 6x=-26 | | 3x+4=18x-4x | | 4(5x-1)+2(1-7)=x | | 3x-6=10x-6 | | 1/5t+2-2=17-2 | | (x+3)+x=29 | | x=5⋅x+5 | | 600+4m=1800 | | (x)=5⋅x+5 | | 0=5x-7/9x+2 | | H(x)=5x-7/9x+2 | | -17-2/3x=-18 | | S^3+8s^2+17s+10=0 | | S3+8s2+17s+10=0 | | 3/2x—4=14 | | (2-j)(3+j)(20-j)=0 | | 6x+4x10=180 | | 2+5y+10=3y=20+4 | | 2/3x+4=5/6x | | x-x*0.015=1000 |