2/3x-5=2+1/2x

Simple and best practice solution for 2/3x-5=2+1/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-5=2+1/2x equation:



2/3x-5=2+1/2x
We move all terms to the left:
2/3x-5-(2+1/2x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(1/2x+2)-5=0
We get rid of parentheses
2/3x-1/2x-2-5=0
We calculate fractions
4x/6x^2+(-3x)/6x^2-2-5=0
We add all the numbers together, and all the variables
4x/6x^2+(-3x)/6x^2-7=0
We multiply all the terms by the denominator
4x+(-3x)-7*6x^2=0
Wy multiply elements
-42x^2+4x+(-3x)=0
We get rid of parentheses
-42x^2+4x-3x=0
We add all the numbers together, and all the variables
-42x^2+x=0
a = -42; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-42)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-42}=\frac{-2}{-84} =1/42 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-42}=\frac{0}{-84} =0 $

See similar equations:

| 12x=15+12 | | e=7-e | | 2d+10=30 | | r+12=4 | | 0.12x=15+12 | | 4+n/2=-3 | | 46.50=3/4d | | 12=36n | | 1/2*z=91/4 | | 7(2v+5)=10v | | -3/8(x-6)=5+3x | | F(x)=5(-4)²-3(-4) | | 21=50-7(-5-4w) | | 3(-2x+10)-12=2(3x-9) | | –10u–4=6 | | x=30+3/5 | | x+5+x+x+7+x+4+x+11=180 | | -1/x-4=-5/x+2 | | 10x-5+3x+2=75 | | 16x-10=144 | | -3f+4=11 | | -18x+3=8x-12 | | 3X+2X=30-x | | x^2+53x−150=0 | | 3n+42=7-2(n-2) | | 2x(x+5)-11=2x^2+7x+4 | | 3×(x-6)=108÷12 | | 3×(x-6)=108/12 | | 20x+13=19x+11 | | z−31=15 | | (5(6-z)/4)=-z | | (6x-5)+(5x+4)+60=180 |

Equations solver categories