2/3x-2=4,x=

Simple and best practice solution for 2/3x-2=4,x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-2=4,x= equation:



2/3x-2=4.x=
We move all terms to the left:
2/3x-2-(4.x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(+4.x)-2=0
We get rid of parentheses
2/3x-4.x-2=0
We multiply all the terms by the denominator
-(4.x)*3x-2*3x+2=0
We add all the numbers together, and all the variables
-(+4.x)*3x-2*3x+2=0
We multiply parentheses
-12x^2-2*3x+2=0
Wy multiply elements
-12x^2-6x+2=0
a = -12; b = -6; c = +2;
Δ = b2-4ac
Δ = -62-4·(-12)·2
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{33}}{2*-12}=\frac{6-2\sqrt{33}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{33}}{2*-12}=\frac{6+2\sqrt{33}}{-24} $

See similar equations:

| –6u–14=–2 | | −4x+10=−8+2x | | 8+2x+3-x=2x+ | | 6x-50=4x-10 | | 2x=12x+56 | | 6x+45=4x-15 | | 5x+7=6×-18=3×+1 | | 9x+23(9+52x)=8x+5 | | y^=576 | | 20x+5=5x+65,x= | | r−10=24 | | n-2(3n+4)=-6(n-2)-1 | | 2x+4+3=2x+2+1 | | x-5-3x-15=180 | | n−5=64 | | x/25=8/4 | | x-5+3x-15=180 | | -(-6-8x)=5(6x+4) | | g+9=79 | | j+6=64 | | 85=f+15 | | 12/v=8/17 | | 138.8=x+(x*0.15) | | 4(3r-5)=7(2r+6) | | -9x-4+4x=6+5x-8 | | x+(-3x)=-4 | | 4(3r-5)=7(2r+6 | | 10x2/5=x | | 9(9+x)=21 | | 3y+13×+24=180 | | 10x25=x | | -19x-18=-19x+18# |

Equations solver categories