If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3x-1/6=1/2x+5-6
We move all terms to the left:
2/3x-1/6-(1/2x+5-6)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x+5-6)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
2x-6)!=-5
x∈R
2/3x-(1/2x-1)-1/6=0
We get rid of parentheses
2/3x-1/2x+1-1/6=0
We calculate fractions
(-12x^2)/216x^2+144x/216x^2+(-108x)/216x^2+1=0
We multiply all the terms by the denominator
(-12x^2)+144x+(-108x)+1*216x^2=0
Wy multiply elements
(-12x^2)+216x^2+144x+(-108x)=0
We get rid of parentheses
-12x^2+216x^2+144x-108x=0
We add all the numbers together, and all the variables
204x^2+36x=0
a = 204; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·204·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*204}=\frac{-72}{408} =-3/17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*204}=\frac{0}{408} =0 $
| 27-5a/2=6 | | 128=12^2+240(t) | | 10m-(2/5)=9(3/5) | | 4x+x−3=0 | | 13-5x=2x-1 | | 4a^2+8a+12=0 | | -1/3(9x+42)-5x=70 | | 3(3x+5)=9x-8 | | x+12=-81 | | -3=2a+3-4a | | 9r+r-6=54 | | 2(2t+2)=4(t-15) | | 4k^2+40k+24=0 | | -0.7x+2.53=-0.5x+7.33 | | w+403=177 | | 0.16666d+0.66666=0.25(d-2) | | -2d+1=3 | | -1/3(9c+42)-5=70 | | -5+7x=-7x-5 | | 2x2+x−3=0 | | 1.8x=0.54 | | 0.16666666666666666666666666666666d+0.66666666666666666666666666666666=0.25(d-2) | | 4c+9=8c+1-(2c-11)/3 | | 2(x+10)-x=33 | | 7+3c=-3 | | 9c/10=9/5 | | 24-3r=6(-7+5r) | | -4n-3(2+6n)=-116 | | X/4+x/5=5/8 | | ((1/6)*d)+(2/3)=((1/4)*(d-2)) | | x^2-140x+4500=0 | | 3x+21x-7=6(4x+5) |