2/3x-1/5x=14/15

Simple and best practice solution for 2/3x-1/5x=14/15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-1/5x=14/15 equation:



2/3x-1/5x=14/15
We move all terms to the left:
2/3x-1/5x-(14/15)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-1/5x-(+14/15)=0
We get rid of parentheses
2/3x-1/5x-14/15=0
We calculate fractions
(-1050x^2)/225x^2+150x/225x^2+(-45x)/225x^2=0
We multiply all the terms by the denominator
(-1050x^2)+150x+(-45x)=0
We get rid of parentheses
-1050x^2+150x-45x=0
We add all the numbers together, and all the variables
-1050x^2+105x=0
a = -1050; b = 105; c = 0;
Δ = b2-4ac
Δ = 1052-4·(-1050)·0
Δ = 11025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{11025}=105$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-105}{2*-1050}=\frac{-210}{-2100} =1/10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+105}{2*-1050}=\frac{0}{-2100} =0 $

See similar equations:

| -4n+6=-3n | | −1=b4−7 | | -2(2f-4)=-4(-f+2 | | -13/12-4/3N=-1/3(3n11/4) | | |7x+3|=32 | | -2(2d-4)=-4(-d+2 | | 4/5+5m/3=47/15 | | 2x-1/3=4x=5/7 | | 523.64=200+1.16x | | -11/2m=-9 | | (x-2)(x-5)=28 | | 7/5s+49=11 | | 3n-5=6+5n÷2 | | x/89+(-12)=-14 | | 500+90p=5,000 | | 81x2=7=107 | | 5z=-4-27 | | 81x2+7=107 | | 8x-12+6x+7=5x+8+9x-13 | | 2(4x+2)=4x-12x(x+) | | 3.8x-(-1x9.7x)=2.6+13.3x | | 2(3x+4)-3(x-1)=x- | | 49x^2+84x+48=0 | | (2/x+9)-(9/x-9)=(3x/x^2-81) | | 10+4h=1-5h | | 2a(3a+2)=-8 | | 5/4p=4/3p+3/2 | | X+10-5=8x+13 | | 49x2-8=92 | | 3(u–19)+-3=-12 | | 3(4y–12)+2y=20 | | 5(n-1/4)=3/5 |

Equations solver categories