2/3x-1/3=7/5x+5

Simple and best practice solution for 2/3x-1/3=7/5x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-1/3=7/5x+5 equation:



2/3x-1/3=7/5x+5
We move all terms to the left:
2/3x-1/3-(7/5x+5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+5)!=0
x∈R
We get rid of parentheses
2/3x-7/5x-5-1/3=0
We calculate fractions
10x/135x^2+(-189x)/135x^2+(-5x)/135x^2-5=0
We multiply all the terms by the denominator
10x+(-189x)+(-5x)-5*135x^2=0
Wy multiply elements
-675x^2+10x+(-189x)+(-5x)=0
We get rid of parentheses
-675x^2+10x-189x-5x=0
We add all the numbers together, and all the variables
-675x^2-184x=0
a = -675; b = -184; c = 0;
Δ = b2-4ac
Δ = -1842-4·(-675)·0
Δ = 33856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{33856}=184$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-184)-184}{2*-675}=\frac{0}{-1350} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-184)+184}{2*-675}=\frac{368}{-1350} =-184/675 $

See similar equations:

| 6h-6h+4h-2h=18 | | 7-3(x-5)=22-3x | | 48x-1=46+3 | | 3a+8+a=180 | | (x+20)+(4x-10)+(4x-10)+x=360 | | 2(x=1)=-3(x-2) | | 2x+41=9x+6 | | 2/3x−1/3=7/3x+5 | | (1/4)=16^2x-5 | | -5(y+2)-5y=70 | | -2x+17+7x=50 | | -1b=-9 | | 12x+3+7x-2=180 | | 3k-10=2k+12 | | 32​ x−31​ =37​ x+5 | | 1/2-3/4x=5/24 | | 1x-1/2=-1/5-3/5 | | 5(27-1)-2(3y)=5 | | (7)/(8)w=(4)/(8)w+(6)/(8)w | | 5x+20+3=13 | | k-21=6 | | -1/5-4a/9=2/15 | | 2(3c-1)-4=3c+6 | | 50=x-1 | | xxxxx=xx10107x= | | -1/5-4a/9=2/11 | | 2(j-2)=5j+17 | | 11-5x-710x=7 | | 6.4(x-2.25)=-12.8 | | 9x+7=8x−2 | | 1/10=x/360 | | (x-1)+4=2x |

Equations solver categories