2/3x+7=1/5x+3

Simple and best practice solution for 2/3x+7=1/5x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+7=1/5x+3 equation:



2/3x+7=1/5x+3
We move all terms to the left:
2/3x+7-(1/5x+3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+3)!=0
x∈R
We get rid of parentheses
2/3x-1/5x-3+7=0
We calculate fractions
10x/15x^2+(-3x)/15x^2-3+7=0
We add all the numbers together, and all the variables
10x/15x^2+(-3x)/15x^2+4=0
We multiply all the terms by the denominator
10x+(-3x)+4*15x^2=0
Wy multiply elements
60x^2+10x+(-3x)=0
We get rid of parentheses
60x^2+10x-3x=0
We add all the numbers together, and all the variables
60x^2+7x=0
a = 60; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·60·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*60}=\frac{-14}{120} =-7/60 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*60}=\frac{0}{120} =0 $

See similar equations:

| X(2-x)=2 | | 7x+4=3x+-8 | | 4y=3y+21 | | 3.6x=2.4x+8.4 | | 8(v-9)-2(v+6)=-3v+8 | | (x+1)(3-x)=3 | | −32w+12=−52 | | 3.6x=2.4x+8.4x | | −32w+12=−52 | | 9−4p=–7p | | Y=2x+6/x-1 | | -4(5b+4)=5b+7 | | 8x-(x-2)=x+26 | | 4(4x-2)+1=16x-6 | | -1/3x-1/2=-2/5 | | 11x/20-11=x/5+17 | | (x-1)(2x-3)=1 | | 1+5w=–6+4w | | 2n-5n+5=-2n-6 | | 8-(x-1)+6x=14 | | -5+4x=41 | | (2x-7)2+8=0 | | 2x-8+22=90 | | 5x/18-4=x/6+4 | | 5x+18-6x=19 | | 212=-w+165 | | 39=k/30 | | 5/8=x/63 | | 121-y=212 | | 4(-3-2x)=-2x-6(x+2) | | 2x+4x-12=180 | | 4x-3(2x-3)=7 |

Equations solver categories