2/3x+25+3(5/12x-25)=180

Simple and best practice solution for 2/3x+25+3(5/12x-25)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+25+3(5/12x-25)=180 equation:



2/3x+25+3(5/12x-25)=180
We move all terms to the left:
2/3x+25+3(5/12x-25)-(180)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 12x-25)!=0
x∈R
We add all the numbers together, and all the variables
2/3x+3(5/12x-25)-155=0
We multiply parentheses
2/3x+15x-75-155=0
We multiply all the terms by the denominator
15x*3x-75*3x-155*3x+2=0
Wy multiply elements
45x^2-225x-465x+2=0
We add all the numbers together, and all the variables
45x^2-690x+2=0
a = 45; b = -690; c = +2;
Δ = b2-4ac
Δ = -6902-4·45·2
Δ = 475740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{475740}=\sqrt{36*13215}=\sqrt{36}*\sqrt{13215}=6\sqrt{13215}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-690)-6\sqrt{13215}}{2*45}=\frac{690-6\sqrt{13215}}{90} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-690)+6\sqrt{13215}}{2*45}=\frac{690+6\sqrt{13215}}{90} $

See similar equations:

| p/25=p+4/125 | | 9=k*20 | | 5(h-2)=-10 | | 5-3x=46 | | 30=12-2x | | 11-5m=-14 | | 11x^{2}+1=2x^{2} | | -19=27+9-6y | | -5b+3=18 | | 2r+30=1.5r | | -0.75x+0.45x=6.9 | | -3=17z | | -9u+9=9(u-9) | | x=53+4/7 | | 8n-9+12=6 | | k+15=-26 | | 150=30h | | 2x+4=103 | | x+20x-1125=0 | | |8n-9|+12=6 | | -11=6+5x | | -3(3-b)=-21 | | 150-15=3x | | y+36=19 | | 5x-(-3)=18 | | 7(3-1n)=48-4n | | 8x+32=5x+8 | | -2(6-x)=2 | | 5x-(11+17)=4x-12 | | -3d+20=-13 | | −4(2−3x)=7−(9x−6) | | b-5=10.8 |

Equations solver categories