2/3x+2/5=4/15x-2

Simple and best practice solution for 2/3x+2/5=4/15x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+2/5=4/15x-2 equation:



2/3x+2/5=4/15x-2
We move all terms to the left:
2/3x+2/5-(4/15x-2)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 15x-2)!=0
x∈R
We get rid of parentheses
2/3x-4/15x+2+2/5=0
We calculate fractions
90x^2/1125x^2+750x/1125x^2+(-300x)/1125x^2+2=0
We multiply all the terms by the denominator
90x^2+750x+(-300x)+2*1125x^2=0
Wy multiply elements
90x^2+2250x^2+750x+(-300x)=0
We get rid of parentheses
90x^2+2250x^2+750x-300x=0
We add all the numbers together, and all the variables
2340x^2+450x=0
a = 2340; b = 450; c = 0;
Δ = b2-4ac
Δ = 4502-4·2340·0
Δ = 202500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{202500}=450$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(450)-450}{2*2340}=\frac{-900}{4680} =-5/26 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(450)+450}{2*2340}=\frac{0}{4680} =0 $

See similar equations:

| 4•1.5w•w=1350 | | -9-8x=41 | | 5x-5=-4x-32 | | 8z=944 | | 0=-16t^2+35t+3 | | 5x3-20x2+15x=0 | | 73=-12n+9 | | 20+8684x=825,000 | | 4.6=f+6.3 | | M×3m=102 | | 7h-6=15 | | 5d3-20d2+15d=0 | | r/7-5=6 | | 7n-6n+8=4 | | -5*g+2.3=18.8 | | 9(4b-1)=18b+6 | | 13x-22=14x+6 | | x(.07)=250000 | | 3(8r+6)=-15 | | 2b+2+b/2=27 | | 7x-4+x=44 | | h-26.9=12.74 | | 16r=352 | | 15n2-15=10n+10n2 | | -7c+8=36 | | 1r6=352 | | -8+y=8 | | -26=x-11 | | w-26.9=12.74 | | 3x-1=4x-1+3x | | 10x-3=8x | | 8x-4/x=3 |

Equations solver categories