2/3x+1=1/6x+8

Simple and best practice solution for 2/3x+1=1/6x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+1=1/6x+8 equation:



2/3x+1=1/6x+8
We move all terms to the left:
2/3x+1-(1/6x+8)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x+8)!=0
x∈R
We get rid of parentheses
2/3x-1/6x-8+1=0
We calculate fractions
12x/18x^2+(-3x)/18x^2-8+1=0
We add all the numbers together, and all the variables
12x/18x^2+(-3x)/18x^2-7=0
We multiply all the terms by the denominator
12x+(-3x)-7*18x^2=0
Wy multiply elements
-126x^2+12x+(-3x)=0
We get rid of parentheses
-126x^2+12x-3x=0
We add all the numbers together, and all the variables
-126x^2+9x=0
a = -126; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-126)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-126}=\frac{-18}{-252} =1/14 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-126}=\frac{0}{-252} =0 $

See similar equations:

| 6(m+3)=96 | | 8p=9p-10 | | 3v−8=13v−8=1 | | -8x-5=-61 | | 10=48x+4 | | 3r-13=7(r-3) | | 3x-20+2x+10+120+90+90=540 | | 56=-7(2x+4) | | -7+3r=8+8r | | 2+1t=10 | | 2/3a+1=1/6a+8 | | 6-(3x-10)=4(x-1)-7x | | 77=7(w+5) | | 9(t+9)=2t+25 | | 1,5x+1-0,6x+3=4+0,8x | | -7n+5=-1-8n-4 | | 1,5x+1-0,6x+3=4+0,8x¨ | | 10q-6q+4q+3=19 | | −7x+9=30 | | x4.1=0.7 | | 1=k/8-2 | | 25+8p=3p-4(p-4) | | 5=y+24/6 | | -6j+10=-10-4j | | 9+3.5g=11-0.5g9+3.5g=11−0.5g9+3.5g=11-0.5g | | (3x+12)+24=180 | | n-84/2=5 | | 10w=9w+9 | | u/7+58=67 | | -8v-10=-6v+2 | | (x+1)^3-4x=0 | | u7+ 58=67 |

Equations solver categories