2/3x+1/2x=7/24

Simple and best practice solution for 2/3x+1/2x=7/24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x+1/2x=7/24 equation:



2/3x+1/2x=7/24
We move all terms to the left:
2/3x+1/2x-(7/24)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x+1/2x-(+7/24)=0
We get rid of parentheses
2/3x+1/2x-7/24=0
We calculate fractions
(-84x^2)/288x^2+192x/288x^2+144x/288x^2=0
We multiply all the terms by the denominator
(-84x^2)+192x+144x=0
We add all the numbers together, and all the variables
(-84x^2)+336x=0
We get rid of parentheses
-84x^2+336x=0
a = -84; b = 336; c = 0;
Δ = b2-4ac
Δ = 3362-4·(-84)·0
Δ = 112896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{112896}=336$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(336)-336}{2*-84}=\frac{-672}{-168} =+4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(336)+336}{2*-84}=\frac{0}{-168} =0 $

See similar equations:

| 1+3x=-x+5 | | 16w-9w+5=-20 | | -2(2x-4)=4(-x+2) | | 1.2(10x-5)-2(4x+7)=8 | | 4*2^-x=0.12 | | -3a+16+5a=2a-4a | | 12y^2−5y−2=0. | | 2(b+6)=54 | | 100-38.34=x | | -1/2(2x+5/8)=35/16 | | 8/7d+6=-10 | | 6n-7=7n-14 | | 30+g+g=14 | | 2(1/2t+8)=3 | | 6x+20=30-10+6x | | 4y/4=7 | | -2+2w+w=6+5w | | -10=5(y+9) | | 20-9x=1x+10 | | -2+2w-w=6+5w | | 4x+20=12x+2x | | 2w=6+7 | | 61/15=1/3x+3/5x+1/3 | | 69=(m+3.3) | | 2x2−98=0 | | 42=4d-6d+6= | | -8x+9=3x-46 | | 5x+1=8+12x | | 15.2-3.0a=9.2 | | 32•50x=4800 | | 8x+10=-20+2x | | 52/13=120/x |

Equations solver categories