If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3p+2+1/5p-4=7/5
We move all terms to the left:
2/3p+2+1/5p-4-(7/5)=0
Domain of the equation: 3p!=0
p!=0/3
p!=0
p∈R
Domain of the equation: 5p!=0We add all the numbers together, and all the variables
p!=0/5
p!=0
p∈R
2/3p+1/5p+2-4-(+7/5)=0
We add all the numbers together, and all the variables
2/3p+1/5p-2-(+7/5)=0
We get rid of parentheses
2/3p+1/5p-2-7/5=0
We calculate fractions
250p/375p^2+3p/375p^2+(-21p)/375p^2-2=0
We multiply all the terms by the denominator
250p+3p+(-21p)-2*375p^2=0
We add all the numbers together, and all the variables
253p+(-21p)-2*375p^2=0
Wy multiply elements
-750p^2+253p+(-21p)=0
We get rid of parentheses
-750p^2+253p-21p=0
We add all the numbers together, and all the variables
-750p^2+232p=0
a = -750; b = 232; c = 0;
Δ = b2-4ac
Δ = 2322-4·(-750)·0
Δ = 53824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{53824}=232$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(232)-232}{2*-750}=\frac{-464}{-1500} =116/375 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(232)+232}{2*-750}=\frac{0}{-1500} =0 $
| 187500=x+(0.08*x) | | 4p=-1/8 | | 3^2x-1-12.3^x+181=0 | | (((9x)x)x)+0x+7x=2268 | | (((9x)x))x+7x=2268 | | ((9x)x)x+7x=2268 | | y=1/2y+4 | | 3x+22+4x-16+90=180 | | 0=x^2/2*13/3 | | 0=x/2*13/3 | | 10.6=2.1x-27.2 | | 10.6=2.1y-(27.2) | | 6(8x+15)=12 | | -3=13+7x | | 2y-14=1 | | 16x+8-5x+15=-14 | | 4x(4x-8)=(5x-15) | | 81=27^x+5 | | 21=9f+2f | | y-2+5=0 | | 5+2/a=3a/2 | | S(t)=-16t^2-22t+40 | | 532-g=426 | | 2(7y+13)=-13 | | -33=-9+2b | | 8^x-3=32x+2/4-x | | 8x-3=32x+2/4-x | | 19=4-y-3+3y | | (3x-15)(4x+16)=0 | | 6x-26=12 | | 24-4x=-28 | | 11x+6-13=4x-6 |