If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/3(2-3x)=1/9(2x+1)
We move all terms to the left:
2/3(2-3x)-(1/9(2x+1))=0
Domain of the equation: 3(2-3x)!=0
x∈R
Domain of the equation: 9(2x+1))!=0We add all the numbers together, and all the variables
x∈R
2/3(-3x+2)-(1/9(2x+1))=0
We calculate fractions
(18x2/(3(-3x+2)*9(2x+1)))+(-3x0/(3(-3x+2)*9(2x+1)))=0
We calculate terms in parentheses: +(18x2/(3(-3x+2)*9(2x+1))), so:
18x2/(3(-3x+2)*9(2x+1))
We multiply all the terms by the denominator
18x2
We add all the numbers together, and all the variables
18x^2
Back to the equation:
+(18x^2)
We calculate terms in parentheses: +(-3x0/(3(-3x+2)*9(2x+1))), so:We get rid of parentheses
-3x0/(3(-3x+2)*9(2x+1))
We multiply all the terms by the denominator
-3x0
We add all the numbers together, and all the variables
-3x
Back to the equation:
+(-3x)
18x^2-3x=0
a = 18; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·18·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*18}=\frac{6}{36} =1/6 $
| 6x+11x=x+3 | | 7-2(v+4)+2=5 | | 2w^2+15w-120=0 | | 20=-39+3/2t | | 12x42=90 | | W=-39+3/2t | | 43425+125m+200m=45000-150m | | 45x=93+34 | | 160+3p=195-2p | | 10x+x+5-61+10=180 | | 7=6(2x+4)-5 | | 10-4(p+7)=2)1-p) | | 2.8x-8.78=4.1 | | 3x+7=12.6x-5 | | 3x+7=126x-5 | | -2(2f-4)=-2(-f+4) | | -169+13x=5x+63 | | 3v+8=8+2v=v | | -3-(-42)=x/2 | | 2x-1+5-42=180 | | 7y+5+3y+4=12y-7 | | 33a+13=8a | | -x/3+3=x+21 | | x-8.91=3.9 | | (4-5y)-2(3.5y-8)=-12y+-12 | | 6+5(x-7=71 | | 14/w=9.4/4.5 | | (x+1)^2-x^2=37 | | 14,040+-50x22=12,500+20x22 | | .15p=2.4 | | .5x+.3=1.8 | | 3b-16=7b |