2/2x+1=3/x+6

Simple and best practice solution for 2/2x+1=3/x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/2x+1=3/x+6 equation:



2/2x+1=3/x+6
We move all terms to the left:
2/2x+1-(3/x+6)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x+6)!=0
x∈R
We get rid of parentheses
2/2x-3/x-6+1=0
We calculate fractions
2x/2x^2+(-6x)/2x^2-6+1=0
We add all the numbers together, and all the variables
2x/2x^2+(-6x)/2x^2-5=0
We multiply all the terms by the denominator
2x+(-6x)-5*2x^2=0
Wy multiply elements
-10x^2+2x+(-6x)=0
We get rid of parentheses
-10x^2+2x-6x=0
We add all the numbers together, and all the variables
-10x^2-4x=0
a = -10; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-10)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-10}=\frac{0}{-20} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-10}=\frac{8}{-20} =-2/5 $

See similar equations:

| 4(x+3)=2(x+18) | | 9=n/3+7 | | 0.3x-2=0.1x+1 | | x/6+x/12+x/7+2+10=x | | -2=-7+e/3 | | -8u-3u=77 | | 2=x+3+2x | | -5=y/3-10 | | 3-8x=6x-1 | | 5x+15=2x+33 | | 4=12/p | | 1,100=22(p+15) | | -2(v-3)=-10 | | 22=2+5u | | 3x+1+7x-3=8x+20 | | 2x-7=-2x+13 | | -3=3(q+17) | | 14=-1+3d | | x+80=75 | | 3x-21x+21=47 | | .20x=625+.10x | | b=0.13(180000-b) | | -2+3x=4x-2-x | | 5,328=48(p+25) | | 9^4x-1=27 | | -1=5d+9 | | 5=-3+3/5a | | 5x^-6x-8=0 | | 4-2y=-2y+10 | | 5n+49=12n | | (x+10)^5=70. | | -16t^2+128t=-30 |

Equations solver categories