If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/15x+7/3x+11/4=9/10
We move all terms to the left:
2/15x+7/3x+11/4-(9/10)=0
Domain of the equation: 15x!=0
x!=0/15
x!=0
x∈R
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
2/15x+7/3x+11/4-(+9/10)=0
We get rid of parentheses
2/15x+7/3x+11/4-9/10=0
We calculate fractions
(-4860x^2)/7200x^2+14850x^2/7200x^2+960x/7200x^2+16800x/7200x^2=0
We multiply all the terms by the denominator
(-4860x^2)+14850x^2+960x+16800x=0
We add all the numbers together, and all the variables
14850x^2+(-4860x^2)+17760x=0
We get rid of parentheses
14850x^2-4860x^2+17760x=0
We add all the numbers together, and all the variables
9990x^2+17760x=0
a = 9990; b = 17760; c = 0;
Δ = b2-4ac
Δ = 177602-4·9990·0
Δ = 315417600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{315417600}=17760$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17760)-17760}{2*9990}=\frac{-35520}{19980} =-1+7/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17760)+17760}{2*9990}=\frac{0}{19980} =0 $
| x+(x(.05))=611,153 | | x/2+5/4=27/2-3x. | | 9x-3=X+1 | | -11.56+12.1v-16.39=15.7-17v | | 29x+32=80 | | x+(x+30)+.4x+.6x=360 | | -4=v/7 | | -1/3x-1/2=-1/5x-1 | | 2x^+7=27 | | 3x+4×=-40-21+7 | | 1870=400+70v | | 0.12y+0.04(y+8000)=1120 | | 6=6+s | | 9/15=8/z | | 2f=-18 | | -9(v+1)=27 | | v/4=16 | | 4.57b-4.87=0.09 | | 10.81b-1.33=1.57 | | 2-(x-3)=6(x+11) | | -x+8x-11=7(×-8)-7 | | 128=0.8(220-a) | | 11x+11+6x+16=18 | | 17.94-0.6r=-3.2r | | 10-6/7y=13 | | 0.16+0.66(y+4000)=2000 | | x-8=-2x | | 11x4-2=57 | | 17x-6=16x+1 | | 3x-7/4+x+21/5=11 | | -10-4(2-4p)=4(p-2)-10 | | 9•x=8100 |