If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2/11m+16m=4+6/11m
We move all terms to the left:
2/11m+16m-(4+6/11m)=0
Domain of the equation: 11m!=0
m!=0/11
m!=0
m∈R
Domain of the equation: 11m)!=0We add all the numbers together, and all the variables
m!=0/1
m!=0
m∈R
2/11m+16m-(6/11m+4)=0
We add all the numbers together, and all the variables
16m+2/11m-(6/11m+4)=0
We get rid of parentheses
16m+2/11m-6/11m-4=0
We multiply all the terms by the denominator
16m*11m-4*11m+2-6=0
We add all the numbers together, and all the variables
16m*11m-4*11m-4=0
Wy multiply elements
176m^2-44m-4=0
a = 176; b = -44; c = -4;
Δ = b2-4ac
Δ = -442-4·176·(-4)
Δ = 4752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4752}=\sqrt{144*33}=\sqrt{144}*\sqrt{33}=12\sqrt{33}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-12\sqrt{33}}{2*176}=\frac{44-12\sqrt{33}}{352} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+12\sqrt{33}}{2*176}=\frac{44+12\sqrt{33}}{352} $
| 3||x+3||−6=0 | | 162=20-w | | 8(m+6)=96 | | -3/4j-2/5=7/10 | | 180+0.25x=320 | | x^2+11x+61=-4x+5x2+11x+61=−4x+5 | | 24x+32=+4x+3 | | -12=a/3-13 | | 6(7+3x)=258 | | 102=12x+30 | | 6(7+3x)=86 | | -3-7x=12 | | I6(7+3x)=86 | | (y/1)-1=2 | | 276=193-u | | 16v-8v=24 | | 6(7+3x=86 | | n|5=10 | | 6*4x=3x+3*6 | | 19x-1+13x-5=99 | | 126=3x×5x | | 7(7+6x)=301 | | 12/20z-5/20=17/20 | | .50(e-30)+2e=135 | | (v+47)/9=10 | | (2x-19)+(4x+19)=180 | | 680=49(x+4) | | 81=2x+6x+1 | | X^4-5600x^2+160000=0 | | -3(n+6)=4-(n-4) | | 4200b=60 | | 1/9(x+1/9)=1/6(x—1/9) |