2.66666666666+3x=4/5x+18

Simple and best practice solution for 2.66666666666+3x=4/5x+18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2.66666666666+3x=4/5x+18 equation:



2.66666666666+3x=4/5x+18
We move all terms to the left:
2.66666666666+3x-(4/5x+18)=0
Domain of the equation: 5x+18)!=0
x∈R
We get rid of parentheses
3x-4/5x-18+2.66666666666=0
We multiply all the terms by the denominator
3x*5x-18*5x+(2.66666666666)*5x-4=0
We multiply parentheses
3x*5x-18*5x+13.3333333333x-4=0
Wy multiply elements
15x^2-90x+13.3333333333x-4=0
We add all the numbers together, and all the variables
15x^2-76.6666666667x-4=0
a = 15; b = -76.6666666667; c = -4;
Δ = b2-4ac
Δ = -76.66666666672-4·15·(-4)
Δ = 6117.77777778
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-76.6666666667)-\sqrt{6117.77777778}}{2*15}=\frac{76.6666666667-\sqrt{6117.77777778}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-76.6666666667)+\sqrt{6117.77777778}}{2*15}=\frac{76.6666666667+\sqrt{6117.77777778}}{30} $

See similar equations:

| -8+1/4n=16 | | 10/2/3x+8=2 | | 8+2.5x=3.5x | | 3x-5x+3=-2x+6 | | 22/3+3x=4/5x+18 | | -12b+8=152 | | M+0n=7 | | A=1,b=-5 | | 1/2(12x+8)=6x+4 | | 5/1/5a-6=8 | | A=0,b=-5 | | 2.66666666666+3x=0.8x+18 | | A=-6,b=0 | | -1x-2(9-8x)=12 | | 10a=35 | | 6+3t=2t-3 | | 6=1/3x+4 | | -5=3/4x+1 | | 5^2x=1 | | (7x+100)=(4-5x) | | 2h+5h+3=0 | | 9+4b=3b | | x2+15=8x  | | (2n)/5+8=30 | | -9q=-6-10q | | 11-10r=-7r-10 | | x=24/348 | | 1.6=-11.2+8v | | 5c/6+7/12=11c/18-1/6 | | 3(x+8)=25 | | X=1+1/2*x | | -240=-4x-6(-7-17) |

Equations solver categories