2.5x+18=3/5x-4

Simple and best practice solution for 2.5x+18=3/5x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2.5x+18=3/5x-4 equation:



2.5x+18=3/5x-4
We move all terms to the left:
2.5x+18-(3/5x-4)=0
Domain of the equation: 5x-4)!=0
x∈R
We get rid of parentheses
2.5x-3/5x+4+18=0
We multiply all the terms by the denominator
(2.5x)*5x+4*5x+18*5x-3=0
We add all the numbers together, and all the variables
(+2.5x)*5x+4*5x+18*5x-3=0
We multiply parentheses
10x^2+4*5x+18*5x-3=0
Wy multiply elements
10x^2+20x+90x-3=0
We add all the numbers together, and all the variables
10x^2+110x-3=0
a = 10; b = 110; c = -3;
Δ = b2-4ac
Δ = 1102-4·10·(-3)
Δ = 12220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12220}=\sqrt{4*3055}=\sqrt{4}*\sqrt{3055}=2\sqrt{3055}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(110)-2\sqrt{3055}}{2*10}=\frac{-110-2\sqrt{3055}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(110)+2\sqrt{3055}}{2*10}=\frac{-110+2\sqrt{3055}}{20} $

See similar equations:

| 73y=36(2y+2) | | 103=-5d+8 | | -w-7/5-(5/3w-2/3)=0 | | 3(6-4y)=-22-7y | | 4f-6+2f-4=50 | | 4/v1=8/6 | | -33+7x=4(8x-4)+8 | | (2x+4)/12-x=20/18 | | -3(4m-2)-m=-72 | | 152=4x+3(7x-16 | | y=y+1 | | -w-7/5=5/3w-2/3 | | 8q-7q-1=19 | | 4(x+2)=5x+2 | | -3(h-4)=2(h+4) | | 1-4m+3m=-5 | | 2(x+3)+4x=6(x+8) | | -24+k=14 | | -3(d-4)=-27 | | 4(x+2)=5x+2* | | x^2-60x+160=0 | | 4(5p-6)-7p=6(2p-5) | | −k/9​ =−1/3​ | | -3u=-81 | | 14-46=4(x-1)-4 | | 15–(x+3)=-1+2(x–3) | | 5a-8+a=4a-1.5 | | 4=3-x/5 | | 15(x)=360 | | 3x-4+4=-2x5+5x | | 2x=3x | | n/4=7.4 |

Equations solver categories