If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5(-3p-8)5p=4(2.25p+5.5)+15.5
We move all terms to the left:
2.5(-3p-8)5p-(4(2.25p+5.5)+15.5)=0
We multiply parentheses
-36p^2-96p-(4(2.25p+5.5)+15.5)=0
We calculate terms in parentheses: -(4(2.25p+5.5)+15.5), so:We get rid of parentheses
4(2.25p+5.5)+15.5
We multiply parentheses
8p+22+15.5
We add all the numbers together, and all the variables
8p+37.5
Back to the equation:
-(8p+37.5)
-36p^2-96p-8p-37.5=0
We add all the numbers together, and all the variables
-36p^2-104p-37.5=0
a = -36; b = -104; c = -37.5;
Δ = b2-4ac
Δ = -1042-4·(-36)·(-37.5)
Δ = 5416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5416}=\sqrt{4*1354}=\sqrt{4}*\sqrt{1354}=2\sqrt{1354}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-104)-2\sqrt{1354}}{2*-36}=\frac{104-2\sqrt{1354}}{-72} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-104)+2\sqrt{1354}}{2*-36}=\frac{104+2\sqrt{1354}}{-72} $
| 2.5(-3p-8)5p=4(2.25p+5.5)15.5 | | q+9=12 | | 3u+42=-3(u+4) | | x^2+(2x–3)^2=(2x+3)^2 | | A=14r2 | | 50-3.5x=8+3.5x | | 2/1000=x/100000000000 | | 6x=x+45=180 | | 400=2r | | t/6-9=13 | | 4+3x=20=5x | | 3x+2=10x–12 | | 5(v-6)-7v=-32 | | 7x^2+21=14 | | 5c+17=13+10c | | 8.8v=528 | | 5+2=2b=3 | | 1/4=31/7-3x | | P=8-0,002x500 | | P=8-0,002x0 | | -21=-1/4y+6 | | m=1+2/3 | | 2/1000=x/1,000,000,000 | | P=2+0.001x8 | | 3(2x+7)=4x+31 | | 2(4x-5)=50 | | 5(u-6)=20 | | -27+2x=3x+6 | | -5+-4x+7x=1 | | 114+x+x=180 | | 36=6(f+13 | | 3x-115=180 |