If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.4x^2-196=0
a = 2.4; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·2.4·(-196)
Δ = 1881.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{1881.6}}{2*2.4}=\frac{0-\sqrt{1881.6}}{4.8} =-\frac{\sqrt{}}{4.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{1881.6}}{2*2.4}=\frac{0+\sqrt{1881.6}}{4.8} =\frac{\sqrt{}}{4.8} $
| 2756000+0.03x=0.1952x | | k=160/120 | | -(x+4)=9. | | x–2-4=20 | | 6x+8=-x-27 | | 6x+8,1+4x2=0 | | -4+7p-2p=56 | | n+n+3=15 | | 4+3+y=28 | | g-10-2=46 | | 9=2+8+y | | 8(18−5a)=32a | | 4.x2−5x+6=05.x2−3x−28=0 | | p-4-11=3 | | 5x2=802.4x2-196=03.4x2+10=16x2-422 | | x+5+1=31 | | 2n^2+16n-2.5=0 | | c5/17=-30 | | 5/17c=-30 | | c+4=40 | | x+4=7;{0,1,2,3} | | 2x2+4x-336=0 | | a×10=70 | | 2xx9=36 | | 7x-4=30-10x | | 3-(x-12)=26 | | –3x=27 | | -x2=-25=x | | 5x-3x=-6+8 | | d^2=56 | | 2y+y=8-3 | | d2=56 |