2-x(x+9)=(3x+1)(5-x)

Simple and best practice solution for 2-x(x+9)=(3x+1)(5-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2-x(x+9)=(3x+1)(5-x) equation:



2-x(x+9)=(3x+1)(5-x)
We move all terms to the left:
2-x(x+9)-((3x+1)(5-x))=0
We add all the numbers together, and all the variables
-x(x+9)-((3x+1)(-1x+5))+2=0
We multiply parentheses
-x^2-9x-((3x+1)(-1x+5))+2=0
We multiply parentheses ..
-x^2-((-3x^2+15x-1x+5))-9x+2=0
We calculate terms in parentheses: -((-3x^2+15x-1x+5)), so:
(-3x^2+15x-1x+5)
We get rid of parentheses
-3x^2+15x-1x+5
We add all the numbers together, and all the variables
-3x^2+14x+5
Back to the equation:
-(-3x^2+14x+5)
We add all the numbers together, and all the variables
-1x^2-(-3x^2+14x+5)-9x+2=0
We get rid of parentheses
-1x^2+3x^2-14x-9x-5+2=0
We add all the numbers together, and all the variables
2x^2-23x-3=0
a = 2; b = -23; c = -3;
Δ = b2-4ac
Δ = -232-4·2·(-3)
Δ = 553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{553}}{2*2}=\frac{23-\sqrt{553}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{553}}{2*2}=\frac{23+\sqrt{553}}{4} $

See similar equations:

| 75=11x=-2 | | 15y+5y=20 | | 4(p+3)=23.6 | | -4y-(5y+4)=8 | | 7w+13=27 | | 3x-4=4x+x+8 | | 280+20=m | | 5r=750 | | 3/x-2=6/x+1 | | m-20=280 | | 1/5c+10=5 | | m+20=280 | | −5/6e-2/3e=−24 | | 5(-5y-11)=5y+5 | | 2(x-10)+(12x+19)= | | -40=5t | | 20m=280 | | 9.9=3x | | 3(4s+4)=48 | | 36=(-18)y | | m+(-14)=-24 | | 1/3b+7=10 | | 2(2x+31)=x+29 | | x=(-9)-10 | | 3t−12=−9 | | 7y+42=7( | | 4(l+9)=44 | | 1.6s=80 | | 2r-8-12=98 | | 51/3=8/9x | | 1/3q-7=3 | | 34=(-2)x |

Equations solver categories