2-6/5x+1/10x-4/5=0

Simple and best practice solution for 2-6/5x+1/10x-4/5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2-6/5x+1/10x-4/5=0 equation:



2-6/5x+1/10x-4/5=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
We calculate fractions
(-60x)/1250x^2+125x/1250x^2+(-40x)/1250x^2+2=0
We multiply all the terms by the denominator
(-60x)+125x+(-40x)+2*1250x^2=0
We add all the numbers together, and all the variables
125x+(-60x)+(-40x)+2*1250x^2=0
Wy multiply elements
2500x^2+125x+(-60x)+(-40x)=0
We get rid of parentheses
2500x^2+125x-60x-40x=0
We add all the numbers together, and all the variables
2500x^2+25x=0
a = 2500; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·2500·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*2500}=\frac{-50}{5000} =-1/100 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*2500}=\frac{0}{5000} =0 $

See similar equations:

| 155=m-166 | | 12^3x=40 | | 3n^2+10n=0 | | 9(-4m+2=18-36m | | y/5–2=4 | | n-283=458 | | -5(x+4)=-2(2x+1 | | v-11=21 | | 64=8^x | | r/9=19 | | 3x-13°+58°=90° | | 3r-9=-15 | | r-4=174 | | 15w^2+13w=-6 | | b=90+3 | | 25z^2-45=0 | | p/4-6=10 | | 4x=10=6 | | 21-7=u | | 180=2x+4+2x | | p=42/6 | | h+22=100 | | b=4(23) | | z+55=68 | | 2x+10/x+2=0 | | (2+c)2=(c+5)c | | j-10=22 | | 10=5r-13r-4) | | x2+8x-12=0 | | 4=c^2+3c | | 6+x÷6=8 | | 45=3k |

Equations solver categories