If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2-5(x-3)+x=7x(6x+8)
We move all terms to the left:
2-5(x-3)+x-(7x(6x+8))=0
We add all the numbers together, and all the variables
x-5(x-3)-(7x(6x+8))+2=0
We multiply parentheses
x-5x-(7x(6x+8))+15+2=0
We calculate terms in parentheses: -(7x(6x+8)), so:We add all the numbers together, and all the variables
7x(6x+8)
We multiply parentheses
42x^2+56x
Back to the equation:
-(42x^2+56x)
-4x-(42x^2+56x)+17=0
We get rid of parentheses
-42x^2-4x-56x+17=0
We add all the numbers together, and all the variables
-42x^2-60x+17=0
a = -42; b = -60; c = +17;
Δ = b2-4ac
Δ = -602-4·(-42)·17
Δ = 6456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6456}=\sqrt{4*1614}=\sqrt{4}*\sqrt{1614}=2\sqrt{1614}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-2\sqrt{1614}}{2*-42}=\frac{60-2\sqrt{1614}}{-84} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+2\sqrt{1614}}{2*-42}=\frac{60+2\sqrt{1614}}{-84} $
| 9z+36=27 | | 4x+3+3x-1=6x | | 7(7c+1)+-4c=13(3c+-2) | | 2h-h-h+5h=15 | | -4f-280=-36 | | 9x⁴-40x²+16=0 | | 18=3x-10 | | 12+4()y-2=48 | | 80+.7x=80+.7(150) | | 2n+5n-6n=17 | | -9p+873=9 | | 3.5x=x+40 | | 10x+8+12x-10=90 | | $64^{2x+4}=16^{5x}$ | | 3(4^2x)=12 | | 80+.7x=50+.9(150) | | X^2+x+7=7 | | 12p+3p-6p+2p-3p=8 | | 7^x+2=7 | | 3(4x-4)-11x=2 | | 5+7(1-4n)=-10-6n | | C-1=d+1 | | 80+.7x=50+.9x | | 6r-5r=13 | | (4y+14)-5y=20 | | -49-x=-42-8x | | (2p-6)/4=(2p+3)/5 | | 5+7(1-4n=-10-6n | | 10Xx2Y=32 | | -30=-4x-6x+10 | | -5x^2(x^2-11)=0 | | 98=7p+35 |