2-3-4z=1/8z+9

Simple and best practice solution for 2-3-4z=1/8z+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2-3-4z=1/8z+9 equation:



2-3-4z=1/8z+9
We move all terms to the left:
2-3-4z-(1/8z+9)=0
Domain of the equation: 8z+9)!=0
z∈R
We add all the numbers together, and all the variables
-4z-(1/8z+9)-1=0
We get rid of parentheses
-4z-1/8z-9-1=0
We multiply all the terms by the denominator
-4z*8z-9*8z-1*8z-1=0
Wy multiply elements
-32z^2-72z-8z-1=0
We add all the numbers together, and all the variables
-32z^2-80z-1=0
a = -32; b = -80; c = -1;
Δ = b2-4ac
Δ = -802-4·(-32)·(-1)
Δ = 6272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6272}=\sqrt{3136*2}=\sqrt{3136}*\sqrt{2}=56\sqrt{2}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-56\sqrt{2}}{2*-32}=\frac{80-56\sqrt{2}}{-64} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+56\sqrt{2}}{2*-32}=\frac{80+56\sqrt{2}}{-64} $

See similar equations:

| 62-2x=73-3x | | 7x^2+174x-25=0 | | 31=2d+9 | | 3(2x+1)+2(4x+1)=1 | | -10=110+7m | | 7x6=30+ | | (4x-26)=(3x+18) | | 67=9r-5 | | 3x^2+4x^2=17 | | (x-5)(x-9)=x×x+3 | | 2x+7-5x-12=8x-3 | | x÷8-2=1 | | x+x+(-10)=12 | | 8+4n=6-16n | | 4y-2=34 | | 14x^2-12x=-24 | | 6x+1/4(2x-1)=10 | | 5m=35+75 | | -3(x-1)+9=106 | | –3(x–14)+9x=6x+42 | | 3x=5x+22 | | 4x-2x-6=5x-15 | | -3(x-14)}+9x=6x+42 | | 3x/4-1=x/2+2 | | M=x-7 | | -3(x+5)=5(x+2) | | 18=m-(-4) | | 66=3w | | 758+4x=1284 | | 2=6(5-n) | | 7x/6-8=x/2+4 | | x/6=9/10 |

Equations solver categories