2-(3)/(4)x=(5)/(8)x

Simple and best practice solution for 2-(3)/(4)x=(5)/(8)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2-(3)/(4)x=(5)/(8)x equation:



2-(3)/(4)x=(5)/(8)x
We move all terms to the left:
2-(3)/(4)x-((5)/(8)x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 8x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-3/4x-(+5/8x)+2=0
We get rid of parentheses
-3/4x-5/8x+2=0
We calculate fractions
(-24x)/32x^2+(-20x)/32x^2+2=0
We multiply all the terms by the denominator
(-24x)+(-20x)+2*32x^2=0
Wy multiply elements
64x^2+(-24x)+(-20x)=0
We get rid of parentheses
64x^2-24x-20x=0
We add all the numbers together, and all the variables
64x^2-44x=0
a = 64; b = -44; c = 0;
Δ = b2-4ac
Δ = -442-4·64·0
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1936}=44$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-44}{2*64}=\frac{0}{128} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+44}{2*64}=\frac{88}{128} =11/16 $

See similar equations:

| 4x+5=6× | | 4x+2=2x+7+2x | | f(-2)=1 | | (3v+12)÷6=(4v)÷3 | | 5(x+1)+7x+4=105 | | 9y-10y=-y | | 67=4x+17 | | X+(2/3)x=1 | | 11=13+b | | 1/3n+9=-8 | | w+8/3=19 | | 3+2(2h+3h)+1=h | | x+4-4x=7 | | 2-(5a+7)=-30 | | -7b=-8b+10 | | p-|4|×|−5|=−15p−|4|×|−5|=−15. | | (x/9)+10=12 | | -5(y+2)=70 | | 3/4x-5/8x=-9 | | 3z-5=2z+ | | -75+8p=-7p | | 2x+12x=1 | | 148+2x=360 | | -2(4f+3)-2f=24 | | ⎪2x–3⎥=7 | | -5n-3=-38 | | (x/5)-3=-8 | | -7(-1+7x)=-434 | | f(5)=1.05 | | 7(w+13)=35 | | 8x+38=12x-18 | | 6p-3=6p+5 |

Equations solver categories